Showing entries 1 to 3
Displaying posts with tag: ibmdeveloperworks (reset)
SQL to Hadoop and back again, Part 3: Direct transfer and live data exchange

The third, and final article in my series on migrating data to and from Hadoop and SQL databases is now available:

Big data is a term that has been used regularly now for almost a decade, and it — along with technologies like NoSQL — are seen as the replacements for the long-successful RDBMS solutions that use SQL. Today, DB2®, Oracle, Microsoft® SQL Server MySQL, and PostgreSQL dominate the SQL space and still make up a considerable proportion of the overall market. In this final article of the series, we will look at more automated solutions for migrating data to and from Hadoop. In the previous articles, we concentrated on methods that take exports or otherwise formatted and extracted data from your SQL source, load that into Hadoop in some way, then process or parse it. But if you want to analyze big data, you probably don’t want to wait while exporting the data. Here, we’re going to look at some methods and tools that enable a …

[Read more]
SQL to Hadoop and back again, Part 2: Leveraging HBase and Hive

The second article in a series covering Big Data and SQL interaction is available now:

“Big data” is a term that has been used regularly now for almost a decade, and it — along with technologies like NoSQL — are seen as the replacements for the long-successful RDBMS solutions that use SQL. Today, DB2®, Oracle, Microsoft® SQL Server MySQL, and PostgreSQL dominate the SQL space and still make up a considerable proportion of the overall market. Here in Part 2, we will concentrate on how to use HBase and Hive for exchanging data with your SQL data stores. From the outside, the two systems seem to be largely similar, but the systems have very different goals and aims. Let\’s start by looking at how the two systems differ and how we can take advantage of that in our big data requirements.

SQL to Hadoop and back again, Part 2: …

[Read more]
SQL to Hadoop and back again, Part 1: Basic data interchange techniques

I’ve got a new article, which is part of a new three-part series, on moving data between SQL and Hadoop, both the export to Hadoop and importing processed content back into an SQL store.

In this first one, we look at the basic mechanics and considerations before you start the migration of data, such as the data format, content, and export techniques.

Read: SQL to Hadoop and back again, Part 1: Basic data interchange techniques


Showing entries 1 to 3